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Homework 7

Problem 1

Recall that a particle moving under the influence of a central force has a constant areal

velocity
h
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where h/m is the angular momentum per unit mass. Also,
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where ¢ is the semilatus rectum of the orbit. For an elliptical orbit, with semimajor axis a,
semiminor axis b, and eccentricity ¢ < 1,

(=a(l—¢e?), v =a?(1—&%). (3)

(a) The orbital period 7 is given by
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which is a statement of Kepler’s third law.

(b) Examine how well ([5)) holds for the solar system. Complete the table below by obtaining
the period 7 and semimajor axis a of each planet’s orbit from the given data sheet. Then
calculate 72/a® and compare it with 47%/GMg (Mg = 1.9884 x 10*° kg, G = 6.674 x 10~

m?/ (kg - 5%)).

| Planet [ Orbital Period 7 (s) | Semimajor Axis a (m) | 72/a® | % error |
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune




(c) Repeat Part (b) for Jupiter’s four largest (Galilean) moons. The mass of Jupiter is
M = 1.8985 x 1027 kg,

| Moon | Orbital Period 7 (s) | Semimajor Axis a (m) | 72/a® | % error |

Io
Europa
Ganymede
Callisto

Problem 2

In 2008, astronomers discovered extrasolar planets orbiting the young star HR 8799, which
is located 129 light years away from earth. The mass of the star is

My =1.56 Mg.
For the four planets in the system, the semi-major orbital axes are

HR 8799 a: 68.0 au
HR 8799 b : 42.9 au
HR 8799 ¢: 27.0 au
HR 8799 d: 14.5 au,

where 1 au = 149.598 x 10° m (1 light year = 63241 au). Use Kepler’s third law,
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to calculate the periods of these planets in years (1 year = 365.25 days = 31.5576 x10° s).

Problem 3

Consider a satellite orbiting the earth in a circular orbit O; of altitude 6000 km. Take the
earth’s mean radius R to be 6378 km and the gravitational parameter GMpg to be 398.6 x 102
m?/s2. Also, recall that for Kepler orbits, the specific angular momentum h/m of the motion
is related to the semilatus rectum ¢ of the orbit by
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while the specific energy E/m of the motion is related to the semilatus rectum [ and the
orbital eccentricity £ by
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(a) Show that for a circular orbit of radius r¢, the satellite speed vy satisfies the relation

GM
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and the specific energy is given by
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(b) Calculate the quantities hy/m and E;/m for the circular orbit O;.

(c) Suppose that at a point A on the orbit O; the speed of the satellite is increased due to
a tangential impulsive thrust by an amount

Avy = 660 m/s. (11)

Let v/y = vq + Avy. Calculate the dynamical quantities hy/m and E;/m for the new orbit
O,. Show that it is elliptical. Denote its apogee by B. Calculate the semilatus rectum ¢,
and the eccentricity €9 of O,. Also, calculate the semimajor and semiminor axes of the orbit,
as well as the distances r,» and rq2 to perigee and apogee, respectively. Using conservation
of angular momentum, calculate the speed vg of the satellite at apogee. Sketch the orbits

O; and O,.
(d) Next, let the speed of the satellite be impulsively decreased at apogee by 200 m/s:
Avp = —200 m/s. (12)

Denote the new speed of the satellite by v}z, and the new orbit by Os. Determine the orbital
parameters for Os; use a subscript to identify them. Add the new orbit to your sketch.
Denote its perigee by C'. Calculate the satellite’s speed v at perigee.

(e) Argue that by reversing the increments and , at B and A, the satellite could be
returned to its original circular orbit O; at a speed-increment cost of Av = 860 m/s.

(f) As an alternative way to return to O;, a Hohmann transfer semiellipse Oy may be
constructed with perigee at C' and apogee at a point D that lies on the circle O; and is
diametrically opposite to A. Thus,

Typ =TC =T3p,  Taa=7Tp = 12.378 x 10° m. (13)

Calculate the quantities ay4, €4, 4, and by for the transfer orbit. Then, use Eqns. and
to determine hy/m and E;/m.

(g) Use the value hy/m to calculate the satellite’s speed vy in the orbit Oy, after the impulse
at C. Likewise, calculate the speed vp which it has at apogee D, before the final impulse
that returns it to the circular orbit Oj.



(h) Sum up the absolute values of the speed increments in Part (g) and compare the cost
to that in Part (e).
Problem 4

Suppose that an intercontinental ballistic missile is launched from the earth’s surface with
a speed vy = 6.7 km/s and a flight-path angle ¢y = 20°. The radius of the earth is 6378 km.

(a) Use the initial data to determine the dynamical constants h/m and E/m of the missile’s
orbit.

(b) Apply Eqns. and to calculate the semilatus rectum and eccentricity of the orbit.
(c) Calculate the semimajor and semiminor axes.

(d) Find the apogee and perigee.

(e) Calculate the speed of the missile at apogee.

(f) Recall that the orbit is described by the equation
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where the angle @ is the true anomaly. Calculate the value 6, of 6 at launch.
(g) Calculate the maximum altitude and range of the missile.
(h) Sketch the missile’s orbit in relation to the earth.
Problem 5
Consider an attractive central force field of the type
F=—f(r)e., [f>0. (15)
The angular momentum and energy integrals are given by
h=mr? (>0) (16)
and
1 .
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and note that
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The equation of motion for r, namely

may then be expressed as
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Suppose that the law of attraction is that of inverse cube, i.e.,
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(a) Calculate the corresponding potential energy function V(r), taking V' — 0 as r — oo.

(b) Deduce that
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(c) First, consider the case

Deduce that

(23)

(24)

(25)

(26)



and show that the orbit must be of the form

1
- =u= A+ B, (28)
,

where A and B are constants of integration. Further, argue that
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What is the special case £ = 07 If ¥ > 0, prove that the orbit cannot have any apsis. Sketch
the particular orbit

(30)

(d) Next, consider the case

(%)2 — > 0. (31)

Equation (24) is then if the form

d*u
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Deduce that the orbits are described by

1
— =u= Acoswh + Bsinwld = C cos(wb + 1), (33)
,

where A, B, C, 1 are constants. Relate C' to the dynamical constants and deduce that
E > 0 for this case. Also, show that there is only one apsidal distance, which is given by
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For the particular case
1
— =u = cos 40, (35)
,

Find the values of # at which the apsides occur and also solve for the apsidal distance. Sketch
the orbits.

(e) Finally, consider the case



a =Y
Equation (24) is then of the form
d*u
ap ~ 100

Show that the orbits are of the form

1
—=u=Ae" 4 Be ¥,
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where A and B are constants.

(For the inverse cube law, the orbits are known collectively as Cotes’s spirals.)
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